Nonlinear event-related responses in fMRI.

نویسندگان

  • K J Friston
  • O Josephs
  • G Rees
  • R Turner
چکیده

This paper presents an approach to characterizing evoked hemodynamic responses in fMRI based on nonlinear system identification, in particular the use of Volterra series. The approach employed enables one to estimate Volterra kernels that describe the relationship between stimulus presentation and the hemodynamic responses that ensue. Volterra series are essentially high-order extensions of linear convolution or "smoothing." These kernels, therefore, represent a nonlinear characterization of the hemodynamic response function that can model the responses to stimuli in different contexts (in this work, different rates of word presentation) and interactions among stimuli. The nonlinear components of the responses were shown to be statistically significant, and the kernel estimates were validated using an independent event-related fMRI experiment. One important manifestation of these nonlinear effects is a modulation of stimulus-specific responses by preceding stimuli that are proximate in time. This means that responses at high-stimulus presentation rates saturate and, in some instances, show an inverted U behavior. This behavior appears to be specific to BOLD effects (as distinct from evoked changes in cerebral blood flow) and may represent a hemodynamic "refractoriness." The aim of this paper is to describe the theory and techniques upon which these conclusions were based and to discuss the implications for experimental design and analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A semi-parametric nonlinear model for event-related fMRI

Nonlinearity in evoked hemodynamic responses often presents in event-related fMRI studies. Volterra series, a higher-order extension of linear convolution, has been used in the literature to construct a nonlinear characterization of hemodynamic responses. Estimation of the Volterra kernel coefficients in these models is usually challenging due to the large number of parameters. We propose a new...

متن کامل

Generalized Event-related Potentials: System Models for Continuous Eeg with Task Variables

If we adopt the simplified view that the brain is a deterministic system having EEG as output, with isolated task events as input, then we can use average eventrelated potentials (ERPs) to approximate impulse response functions. In an actual experiment, however, task events are not isolated. Rather, they interact via brain memory systems, and their associated electrophysiological responses ofte...

متن کامل

The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism.

It has been well recognized that the nonlinear hemodynamic responses of the blood oxygenation level-dependent (BOLD) functional MRI (fMRI) are important and ubiquitous in a series of experimental paradigms, especially for the event-related fMRI. Although this phenomenon has been intensively studied and it has been found that the post-capillary venous expansion is an intrinsically nonlinear mech...

متن کامل

The mixed block/event-related design

Neuroimaging studies began using block design and event-related design experiments. While providing many insights into brain functions, these fMRI design types ignore components of the BOLD signal that can teach us additional elements. The development of the mixed block/event-related fMRI design allowed for a fuller characterization of nonlinear and time-sensitive neuronal responses: for exampl...

متن کامل

Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies.

Nonlinear effects in fMRI BOLD data may substantially influence estimates of task-related activations, particularly in rapid event-related designs. If the BOLD response to each stimulus is assumed to be independent of the stimulation history, nonlinear interactions create a prediction error that may reduce sensitivity. When stimulus density differs among conditions, nonlinear effects can cause ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 39 1  شماره 

صفحات  -

تاریخ انتشار 1998